Live. Learn. Hope.

Dialysis Lab Interpretation Part 1: Chemistries

Learning Objectives

At the end of the presentation, the nurse will be able to:

- 1. Explain the roles of electrolytes & acceptable levels
- 2. Understand the composition of dialysate
- 3. Review the rationale for choosing varying dialysate composition of the following:
 - a. Sodium
 - b. Potassium
 - c. Bicarbonate
 - d. Calcium
- 4. Identify associated signs & symptoms with hyper & hypo levels & the nursing implications
- 5. Identify the tools available

Dialysis Review

- Dialysis Mechanical treatment for kidney failure
- Works by diffusion.
 - Movement of solutes from area of high to low concentration. "Tea bag" effect!

Diffusion During Dialysis

• Diffusion of solutes across a semi-permeable membrane.

semipermeable membrane

Dialysate

- Solution separated from blood by a semi-membrane.
- Used to remove or add substances to blood through the process of diffusion.
- Made by mixing two concentrate components, which may be provided as liquid or powder (dry) concentrates.
 - Acid
 - Base

Dialysate Components

• BASE component:

Sodium bicarbonate

• ACID component (electrolytes):

- Sodium chloride
- Potassium
- Calcium
- Magnesium
- Acetate (or citrate)
- Glucose
- These two components are mixed simultaneously with purified water (R/O)to make the dialysate.
 - Proper mixing ensured by dialysate proportioning pumps

Dialysate Composition

- •Little data supporting the optimal dialysate composition.
 - Often, the concentrations of key components are chosen intuitively (opinion based)
- •**Goal** = normalize serum chemistries.
 - Should they be normalized at the end of the treatment?
 - Or by the beginning of the next dialysis session?
 Current practice, although this may be harmful
 - because it may lead to "over correction."

Major Dialysate Components

- •Potassium (K)
- •Calcium (Ca)
- •Sodium (Na)
- •Bicarbonate (HCO3)

Where are Lab Results Posted?

• First option (best) - Ascend Labs - Select "Chemistry"

Date Ranç	ge" 11/01/2020	To 02/03/2021	Apply			
Expand C	ollapse All					
- 1	- normary and			1	TRATING	
	Chemistry					
\rightarrow	Sodium		140		136-145	mEq/L
\rightarrow	Potassium		4.4		3.4-5.0	mEq/L
\rightarrow	Chloride		96	L	98-107	mEq/L
	C02		25		21-31	mEq/L
\rightarrow	Anion Gap		19	н	3-14	mEq/L
	Glucose		184	н	74-109	mg/dL
\rightarrow	Hemoglobin A1C		6.7	н	4.0-6.0	%
\rightarrow	BUN		94	н	7-25	mg/dL
	BUN, Post		22		7-25	mg/dL
	Urea Reduction Ratio		77		>=65	%
	Creatinine		9.78	н	0.70-1.25	mg/dL
	Total Protein		7.1		6.4-8.9	g/dL
	Albumin		4.1		3.6-5.4	g/dL
_	Globulin		3.0		2.3-3.5	g/dL
	A/G Ratio		1.4		> 0.9	
\rightarrow	Calcium		9.2		8.6-10.3	mg/dL
	Calcium, Adj. Total		9.2		8.6-10.3	mg/dL
	Phosphorus		4.9		2.5-5.0	mg/dL
	CA*PO4		45.1		< 55.0	mg 2/dL 2
	CA*PO4, Adjusted		45.1		< 55.0	mg 2/dL 2
	Alkaline Phosphatase		142	н	40-105	IU/L
\rightarrow	Magnesium		2.6		1.9-2.7	mg/dL

Where are Lab Results Posted?

• Second option – Clarity > Patient Chart View > Lab Results

		Lab Results								
	•	Adequacy/Recirc								
	•	Hematology								
	Ο	Common Chemistries	n Chemistries							
		Drag a column header and drop it here to group by that column								
		Lab Name	Goal	Date	Value :					
	٠	Na+	136.0-145.0	01/06/2021	140.0					
	٠	K+	3.4-5.0	01/06/2021	4.4					
		a-	98.0-107.0	01/06/2021	96.0*					
	٠	C02	21.0-31.0	01/06/2021	25.0					
		Anion Gap	None	01/06/2021	19.0					
		BUN - Pre	7.0-25.0	01/06/2021	94.0*					
		BUN - Post	7.0-25.0	01/06/2021	22.0					
		Creat	0.6-0.9	01/06/2021	9.8*					
-	٠	Glu	70.0-105.0	01/06/2021	184.0*					
-	٠	Ca+2	8.1-10.2	01/06/2021	9.2					
-	٠	Ca+2(Cor.) 8.5-10.2		01/06/2021	9.2					
	٠	Mg+2	None	01/06/2021	2.6					
		PO4-2	3.5-5.5	01/06/2021	4.9					
		Ca x PO4	04 Under 55.0 01/06/2021		45.1					
		Ca x PO4(Cor.)	Under 55.0	01/06/2021	45.1					
		PTH - Intact	None	01/18/2021	1003.0					
	4	Liver Studies								
		Drag a column header and drop it here to group by that column								
		Lab Name	Goal	Date	Value :					
		Alk Phos	40.0-105.0	01/06/2021	142.0*					
-	٠	Alb	3.6-5.4	01/06/2021	4.1					

www.nwkidney.org

How Do Chemistries Results Fit In? 👉

Nursing implications – what actions you, as the nurse, need to take

Nursing Assessment

Patient manifestations of signs & symptoms

Nursing Interventions

- Consult with MD, suggest changes in treatment parameters – bath changes
- Follow Standing Orders
- Evaluate effectiveness of interventions

Need for other members of IDT interventions

- RD consult
- > Other caregivers such as SNF, AFH, family members

Potassium (K)

- Is a major intracellular electrolyte in our body
- •Important in electrical impulses for the nerves & the heart
- •Helps in maintaining normal water, acid, & base balance, and osmotic equilibrium
- •Normal serum potassium level: 3.5-5.0 mEq/L
- •Acceptable levels for CKD patients: 3.5-5.5 mEq/L
- Standard NKC dialysate K baths: **2K or 3K**

Something Else to Consider

Potassium Gradient

- Key determinant of amount of K that will be removed, especially in the first hour
- The lower the dialysate K, the more K will be removed

www.nwkidney.org

Something to think about when evaluating K bath

During dialysis – remember diffusion!

- First hour: K decreases by 1 mmol/L
 - Faster K shift from blood to dialysate if bath is lower
- Next 2 hours: K declines another 1 mmol/L
 **Rapid K shift is very dangerous!

After dialysis

- K rebounds post dialysis
- Takes several hours (6-12) before the potassium concentrations between extracellular and intracellular compartments are the same.

Why Reconsider Rate of K Diffusion ?

- High potassium gradient may increase the risk of arrhythmia and sudden cardiac death.
- 30 times higher in risk in the dialysis population than the general population.

Long Weekend Between HD Runs

Highest risk of Sudden Cardiac Death is around the first hemodialysis session of the week

- Monday, for Monday, Wednesday, Friday schedule
- Tuesday, for Tuesday, Thursday, Saturday schedule

Bleyer AJ et al. KI 1999; 55: 1553-1559

Why the Higher Risk?

- 4
- Probably due to electrolyte abnormalities, particularly potassium.
 - Before dialysis: hyperkalemia
 - After dialysis: hypokalemia
- Potassium gradient between blood and inside cells may irritate cell membranes.
- Rate of potassium removal.

Hyperkalemia

- Hyperkalemia is the most common & often most dangerous problem r/t acute & chronic kidney disease
- Serum K level <a>>5.5 mEq/L
- Signs & symptoms:
 - Muscle weakness
 - Nausea & vomiting
 - Diarrhea
 - Numbness & tingling especially around the lips & tongue
 - Irregular HR & abnormal EKG
 - Chest pain
- Extreme level can lead to sudden cardiac death (SCD)

Common causes:

- ➢Kidney failure
- Diet excess intake > 3000 mEq/L / day
- ➢Under-dialyzed due access problems or due to recirculation, noncompliance with treatments & diet restrictions
- >Long intervals without dialysis treatment
- Blood transfusion or bleeding related to lysis of RBC which can cause intracellular release of K

Hyperkalemia

Sources of High Potassium:

Fruits: bananas, oranges, prunes, raisins, apricots, etc.
Vegetables: Artichoke, beans, green leafy veg., etc.
Beverages: milk, OJ, V8, fruit juices, instant breakfast, etc.

We're a little concerned about your potassium levels.

Nursing Implications – High K

- Conduct complete assessment of patient including diet intake
- Assess if patient had recent blood transfusion or bleeding
- •Assess for metabolic acidosis due to under-dialyzed (skipped runs)
- Evaluate <u>recent & trends</u> of serum K levels
- Evaluate appropriateness of current K bath

Nursing Implications – High K

•Call MD to:

- Consider possible one-time K bath change
- Check K level
- Possibly transfer patient to hospital (based on S&S)
- Evaluate other contributing comorbid conditions (related to hormones such as Addison's disease), medications (K supplements) or recent blood transfusion
- Refer to RD for diet consult

Hypokalemia

•Serum K level < 3.5 mEq/L

- Signs & symptoms <u>may be very vague</u>
 - Weakness
 - Muscle cramps
 - Constipation
 - Irregular HR / abnormal EKG

47

•Common causes:

- Diarrhea
- Vomiting
- Excessive sweating
- Excessive alcohol intake
- Use of diuretics (common for AKI & new patients)
- Low intake & low K bath
- Other comorbid conditions such as diabetic ketoacidosis

Nursing Implications – Low K

- Conduct complete assessment of patient including diet intake
- Assess if patient has been vomiting or having diarrhea – reasons on how pt. might be losing K
- Evaluate recent & trends of serum K level
- Evaluate appropriateness of current K bath

Nursing Implications – Low K

•Call MD to:

- Consider possible K bath change
- Recheck K level
- Possibly transfer patient to hospital (based on S&S)
- Evaluate other contributing factors, comorbid conditions (GI problems), or medications (diuretics)
- Refer to RD for diet consult

Calcium (Ca)

- Most abundant mineral in the body found in hard tissues, bone, & teeth
- Builds & maintains bones & teeth
- Activates enzymes for metabolic functions
- Helps in blood coagulation, transmission of nerve impulses, contraction of skeletal, cardiac, & muscle fibers
- •Serum Ca range: 8.5-10.5mg/dl
- Standard NKC dialysate Ca bath: 2.5 mEq/L

Hypercalcemia

Serum Ca > 10.5 mg/dl

Signs & symptoms – mostly vague

- Constipation
- Muscle & bone weakness &/or pain
- Neurological confusion, lethargy, fatigue
- Possible causes:
 - Hyperparathyroidism
 - Ca supplements or high Ca bath
- •Nursing implications will be discussed in Renal Osteodystrophy module

•Serum Ca < 8.5 mg/dl

- Signs & symptoms also vague
 - Arrythmias
 - Neurological confusion, memory loss
 - Muscle spasms, stiffness, &/or cramps
 - Numbness & tingling on hands, feet, & face
 - Brittle nails & bones
 - Hypotension

• Possible causes:

- Kidney failure
- High phosphorus
- S/p Parathyroidectomy
- Low diet intake
- Low dialysate Ca bath
- Medications such as phenytoin, phenobarbital, & rifampin
- Advanced stage cancer
- Nursing implications will be discussed in Renal Osteodystrophy module

Dialysate Ca Concentrations

- 2.5 mEq/L (low calcium dialysate)
 Similar to normal serum ionized calcium level
- **3.0** mEq/L (high calcium dialysate)
 - Common in the 1970s in response to widespread hypocalcemia and hyperparathyroidism among dialysis patients.

Phosphorus (PO4)

- Second most abundant mineral in the body (next to Ca)
- Found in bones & teeth
- Functions to build & maintain bones & teeth, activates Vit D, used for nerve & muscle activities
- •Goal 2.5-5.0 mg/dL
- Common sources: dairy products, dark meat, & dark sodas
- •Levels controlled by compliance with diet, phosphorus binders, and adequate dialysis

Phosphorus

Hyperphosphatemia – signs & symptoms

- Itchy skin
- Bone & joint pain
- Weak bones

Hypophosphatemia – signs & symptoms (vague)

- Joint stiffness
- Weakness

Nursing implications will be discussed in Renal Osteodystrophy module

Sodium (Na)

- Major cation of the extracellular fluid
- Regulates extracellular fluid volume
- •Helps conduct nerve impulses
- Controls muscle contraction
- Good indicator of fluid status FOL or dehydration
 results are not necessarily reflective of sodium
 diet intake
- •Serum Na level = 135-145 mEq/L
- Standard NKC Na dialysate bath = **135 mEq/L**

Sodium

47

- Mean predialysis serum sodium concentration for dialysis patients in the US is 138 mmol/L.
- Dialysate Na < 138 will remove sodium from the patient.
- Dialysate Na > 138 will result in sodium infusion into the patient.

Diffusion

(Solvent moves by concentration gradient)

Low Dialysate Sodium

- Removes more sodium from the patient during dialysis.
- Leaves a patient less thirsty and therefore less likely to drink fluid in between dialysis treatments.

<u>Downside</u>

 More likely associated with intradialytic hypotension & possibly cramping & headache.

<u>Benefit</u>

- Better for hemodynamic stability during the dialysis treatment (less hypotension).
 <u>Downside</u>
- Positive sodium balance.
- More sodium in the patient stimulates thirst and promotes volume expansion.

Hypernatremia

Serum Na >145 mEq/L

- Signs & symptoms
 - Excessive thirst
 - Hypertension
 - Lethargy
 - Confusion
- Possible causes:
 - Dehydration
 - Diarrhea, Vomiting
 - Fever, sweating
 - Bleeding

Hyponatremia

- •Serum Na <135 mEq/L
- Signs & symptoms
 - Nausea with vomiting
 - Headache
 - Cramps
 - Confusion
- Possible causes:
 - Fluid overload
 - Diuretics
 - Hormone imbalances

Sodium – Hyper & Hypo

- Nursing implications:
 - Assess patient evaluate possible cause(s)
 - Evaluate serum Na levels <u>always look at</u> <u>trends</u>
 - Consider advantages & disadvantages of higher or lower Na dialysate bath
 - Notify MD if symptoms persist or worsen
 - If trend continues, refer to RD for further evaluation

Carbon Dioxide & Bicarbonate

- •The relationship between carbon dioxide (CO2) & bicarbonate (HCO3) has to do with the metabolic acidosis condition of patients with kidney failure.
- •An abnormally high acid level in the body is detected with a test that measures a form of carbon dioxide (CO_2) that's dissolved in the blood called *serum bicarbonate*. (*NKF*, 2019)

- Bicarbonate is referred to as a *base*, which the body needs to help keep a normal acid-base (pH) balance. This balance prevents your body from becoming too acidic. (*NKF*, 2019)
- •We use Sodium Bicarbonate in HD to treat the metabolic acidosis of our patients

Metabolic Acidosis

4**;**

- Signs & symptoms mostly vague
 - Tachycardia
 - Headaches / confusion
 - Weakness or c/o feeling very tired
 - Vomiting or GI upsets
 - Loss of appetite
- Long term complications
 - Bone loss / weak bones
 - Muscle loss
 - Endocrine disorders

Carbon Dioxide & Bicarbonate

- •CO2 goal level: <a>22
- •NKC standard bicarb bath = 33meq/L
- Nursing Implications:
 - Assess patient for signs & symptoms of metabolic acidosis
 - Evaluate current result vs trend
 - If trend is lower than goal, consult with MD to increase dialysate bicarb level

Albumin

- It is the protein that body uses to transport electrolytes, hormones, & fatty acids
- Protein is important in cell repairs & inflammatory response
- It is the main contributor to oncotic pressure that helps fluid to stay in or move to the vascular space
 = easier fluid removal during dialysis

Goal: >4.0 gm/dL

•<u>Low levels</u> contribute to <u>higher morbidity</u> & <u>mortality</u> rate on ESRD patients

Albumin

- •Hypoalbuminemia <3.6g/dL
- Nursing Implications
 - Evaluate contributing factors especially changes in health & living status, dental problems, recent hospitalization
 - Evaluate recent vs trend results
 - Refer to RD

***Remember* – dialysis triggers inflammatory responses resulting in the body using more protein for cell repair resulting in lower albumin level

What Tools Do We Have?

How can you quickly review & act on chemistry results? Go to "Ascend LabCheck" > Click on "Reports" > "Custom" You can create your own custom report(s) or select from the list. Here's a sample:

Auburn Kidney Center

1501 West Valley Highway N, Auburn, WA 98001

02/01/2021 to 02/18/2021

Collected	Patient Name	Schedule	Shift	ĸ	CA	PHOS	C02	ALB	AL	GLU	HA1C
02/02/2021	I –	STTh	Shift 3	5.2	9.9	4.7	21	3.9			
02/02/2021	1 -	STTh	Shift 3	3.8	9.8	5.6	27	4.0		433	
02/02/2021	I I	STTh	Shift 3	3.8	9.7	8.0	28	3.9			
02/02/2021	I	STTh	Shift 2	3.9	9.5	2.9	25	4.0		161	
02/02/2021	I I	STTh	Shift 1	4.7	9.9	4.5	27	3.6		108	
02/02/2021	i t	STTh	Shift 2	4.8	10.4	8.4	25	4.3		104	
02/02/2021	I I	STTh	Shift 1	4.4	9.3	6.8	27	3.8		95	
02/02/2021	I I	STTh	Shift 1	4.3	9.5	8.2	23	4.0		157	
02/02/2021		STTh	Shift 2	5.0	9.0	3.9	25	4.1		108	

monthly lab review

What Tools Do We Have?

Also run the "Clinic" report from Clarity titled "Hemodialysis Bath Information"

- It shows current K & Ca results & bath orders
- -Do you need to make any adjustments based on the lab result & current bath orders

Hemodialysis Bath Information

Patient Name Prescription Type Bath Orders Current K+ Current Ca+2(cor.) * Outpatient Hemodialysis K 2.0 Ca 2.50 HCO3 40.0 02/02/21 02/02/21 5.5 10.3 * Outpatient Hemodialysis K 3.0 Ca 2.50 HCO3 33.0 02/03/21 4.1 02/03/21 9.9 * Outpatient Hemodialysis K 1.0 Ca 2.50 HCO3 33.0 02/10/21 6.4 02/03/21 11.0 Ca 2.50 HCO3 9.4 * Outpatient Hemodialysis K 3.0 33.0 02/02/21 5.1 02/02/21 * Outpatient Hemodialysis K 2.0 02/03/21 5.4 02/03/21 9.4 Ca 2.50 HCO3 35.0 * Outpatient Hemodialysis K 3.0 Ca 2.50 HCO3 33.0 02/02/21 4.6 02/02/21 9.2 * Outpatient Hemodialysis K 2.0 Ca 2.50 HCO3 33.0 02/02/21 4.7 02/02/21 9.3 Outpatient Hemodialysis K 2.0 Ca 2.50 HCO3 35.0 02/03/21 6.0 02/03/21 9.6 * Outpatient Hemodialysis HCO3 33.0 02/02/21 4.1 02/02/21 9.6 K 3.0 Ca 2.50 * Outpatient Hemodialysis K 2.0 Ca 2.50 HCO3 33.0 02/04/21 4.2 02/04/21 9.5 * Outpatient Hemodialysis K 2.0 Ca 2.50 HCO3 31.0 02/05/21 4.3 02/05/21 8.6 8.5 * Outpatient Hemodialysis K 2.0 Ca 2.50 HCO3 30.0 02/03/21 5.5 02/03/21 * Outpatient Hemodialysis K 3.0 Ca 2.50 HCO3 35.0 02/02/21 5.7 02/02/21 9.3

Northwest Kidney Centers - Auburn Kidney Center

Report Date: 02/18/2021 09:12

Remember The Nursing Process!

The steps of the nursing process are interrelated, forming a continuous circle of thought and action that is both dynamic and cyclic (Doenges & Moorhouse, 2008 a+b)

Summary

- Main contributing factor for abnormal chemistry results on our patients is their kidney failure
- •The goal of dialysis is to "normalize" some of those levels by way of diffusion and using appropriate levels of acid & base
- •The rate of diffusion is affected by the concentration gradient and by other factors

Summary

- •When evaluating results, it is <u>important to look at</u> <u>the whole picture</u>: patient condition, adequacy of dialysis, access, <u>trends</u>, contributing factors, and comorbid conditions
- •Work with members of the IDT, especially the RDs, when trying to resolve abnormal results

References

- Ascend Lab Check. (2021). Retrieved from Lab Results: https://labcheck5.com/app/Patient/Results/Index/406844
- Brockenbrough, A. (2019). Dialysate. Kent. Retrieved January 2021
- *Clarity*. (2021). Retrieved from Patient Chart View Lab Results: <u>https://id.visonex.net/IdMg/</u>
- *Core Curriculum for Dialysis Technician.* (2012). Madison: Medical Education Institute.
- Counts, C. (2015). *Core Curriculum for Nephrology Nursing* (Sixth ed.). Pitman, NJ: ANNA.
- K-NET (1). (2018, December). Retrieved from Chronic Maintenance In-Center Hemodialysis Standing Orders: <u>https://knet.nwkidney.org/docs/1399914623044.pdf?t=637480214579092318</u>
- *NKF (1)*. (2019, September 4). Retrieved from Facts About Metabolic Acidosis and Chronic Kidney Disease: <u>https://www.kidney.org/atoz/content/facts-about-metabolic-acidosis-and-chronic-kidney-disease</u>
- Wilkens, K., Nygren, N. G., Shanaman, B., Smith, V., & Anstley, A. (2019). *The Art of Good Eating.* Seattle: Northwest Kidney Centers.
- Wolfgram, D. (n.d.). Albumin: Important Facts You Should Know. Retrieved from Wisconsin Dialysis Web site: <u>https://www.wisconsindialysis.org/kidney-health/healthy-eating-on-</u><u>dialysis/albumin-important-facts-you-should-know/</u>

